Search results for "missing data"

showing 10 items of 83 documents

Edge-Based Missing Data Imputation in Large-Scale Environments

2021

Smart cities leverage large amounts of data acquired in the urban environment in the context of decision support tools. These tools enable monitoring the environment to improve the quality of services offered to citizens. The increasing diffusion of personal Internet of things devices capable of sensing the physical environment allows for low-cost solutions to acquire a large amount of information within the urban environment. On the one hand, the use of mobile and intermittent sensors implies new scenarios of large-scale data analysis

010504 meteorology & atmospheric sciencesComputer scienceDistributed computingUrban sensingMobile sensingContext (language use)Information technology02 engineering and technology01 natural sciences[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]Smart cityEdge intelligence11. Sustainability0202 electrical engineering electronic engineering information engineeringLeverage (statistics)Edge computingVoronoi tessellation0105 earth and related environmental sciencesSmart cityOut-of-order executionSettore INF/01 - InformaticaMulti-agent systemMissing data imputation020206 networking & telecommunicationsT58.5-58.64Variety (cybernetics)Multi-agent system[INFO.INFO-MA]Computer Science [cs]/Multiagent Systems [cs.MA]Mobile deviceInformation Systems
researchProduct

Study design in causal models

2012

The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by ordering the nodes of the causal diagram in two dimensions by their causal order and the time of the observation. Conclusions whether a causal or observational relationship can be estimated from the collect…

FOS: Computer and information sciencesdesignstructural equation modelG.362A01 62-09 62F99 62D05 62P10 62K99 68T30graphical modelMachine Learning (stat.ML)G.2.2Statistics - ApplicationsG.3; G.2.2Methodology (stat.ME)missing dataStatistics - Machine LearningkausaliteettiApplications (stat.AP)epidemiologiaStatistics - Methodology
researchProduct

Seeing Missing Values

2011

Computer scienceStatisticsImputation (statistics)Missing data
researchProduct

Treating missing data in a clinical neuropsychological dataset--data imputation.

2001

Missing data frequently reduce the applicability of clinically collected data in research requiring multivariate statistics. In data imputation, missing values are replaced by predicted values obtained from models based on auxiliary information. Our aim was to complete a clinical child neuropsychological data set containing 5.2% of missing observations. This was to be used in research requiring multivariate statistics. We compared four data imputation methods by artificially deleting some data. A real-donor imputation method which preserved the parameter estimates and which predicted the observed values with acceptable accuracy was used to complete the data set. In addressing the lack of st…

MaleMultivariate statisticsNeuropsychologyNeuropsychological Testscomputer.software_genreMissing dataData setPsychiatry and Mental healthClinical PsychologyNeuropsychology and Physiological PsychologyArts and Humanities (miscellaneous)Data Interpretation StatisticalStatisticsDevelopmental and Educational PsychologyHumansFemaleData miningImputation (statistics)PsychologyChildCognition DisorderscomputerThe Clinical neuropsychologist
researchProduct

Multiple imputation of rainfall missing data in the Iberian Mediterranean context

2017

Abstract Given the increasing need for complete rainfall data networks, in recent years have been proposed diverse methods for filling gaps in observed precipitation series, progressively more advanced that traditional approaches to overcome the problem. The present study has consisted in validate 10 methods (6 linear, 2 non-linear and 2 hybrid) that allow multiple imputation, i.e., fill at the same time missing data of multiple incomplete series in a dense network of neighboring stations. These were applied for daily and monthly rainfall in two sectors in the Jucar River Basin Authority (east Iberian Peninsula), which is characterized by a high spatial irregularity and difficulty of rainfa…

Mediterranean climateAtmospheric Science010504 meteorology & atmospheric sciencesSeries (mathematics)Computer science0208 environmental biotechnologyContext (language use)02 engineering and technologycomputer.software_genreMissing dataHybrid approach01 natural sciencesLinear methods020801 environmental engineeringExpectation–maximization algorithmStatisticsData miningPrecipitationcomputer0105 earth and related environmental sciencesAtmospheric Research
researchProduct

Missing Data

2009

In this chapter, we deal with the problem of missing data in principal component analysis (PCA) and partial least squares (PLS) methods. First, we review several statistical methods proposed in the literature for handling missing data. Both single and multiple imputation (MI) methods are studied and compared using simulated data. After this, we particularize the missing data problem for building and exploiting multivariate calibration models. Several approaches proposed in the literature are introduced and their performance compared based on several real data sets.

Computer scienceIterative methodSimulated dataPrincipal component analysisExpectation–maximization algorithmPartial least squares regressionMultivariate calibrationMissing data problemData miningcomputer.software_genreMissing datacomputer
researchProduct

Real-Time Human Pose Estimation from Body-Scanned Point Clouds

2015

International audience; This paper presents a novel approach to estimate the human pose from a body-scanned point cloud. To do so, a predefined skeleton model is first initialized according to both the skeleton base point and its torso limb obtained by Principal Component Analysis (PCA). Then, the body parts are iteratively clustered and the skeleton limb fitting is performed, based on Expectation Maximization (EM). The human pose is given by the location of each skeletal node in the fitted skeleton model. Experimental results show the ability of the method to estimate the human pose from multiple point cloud video sequences representing the external surface of a scanned human body; being r…

Computer sciencebusiness.industryHuman pose estimationPoint cloudComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]TorsoMissing data3D pose estimation[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]medicine.anatomical_structure[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Expectation–maximization algorithmPrincipal component analysismedicineComputer visionPoint (geometry)Artificial intelligencebusinessskeleton modelPoseComputingMethodologies_COMPUTERGRAPHICSpoint cloud
researchProduct

A multisensor fusion approach to improve LAI time series

2011

International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …

010504 meteorology & atmospheric sciencesMeteorologytélédétectionsatellite0211 other engineering and technologiesSoil Scienceréseau neuronal02 engineering and technology01 natural sciencessuivi de culturesInstrumentation (computer programming)Computers in Earth SciencesLeaf area index021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingVegetationGeologyVegetationData fusionLAI time seriesSensor fusionMissing dataLAI time series;Vegetation;Modis;Temporal smoothing;Gap filling;Data fusionqualité des données13. Climate actionAutre (Sciences de l'ingénieur)Gap filling[SDE]Environmental SciencesEnvironmental scienceSatelliteModisTemporal smoothingScale (map)Smoothing
researchProduct

Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipit…

2011

Abstract The availability of good and reliable rainfall data is fundamental for most hydrological analyses and for the design and management of water resources systems. However, in practice, precipitation records often suffer from missing data values mainly due to malfunctioning of raingauge for specific time periods. This is an important issue in practical hydrology because it affects the continuity of rainfall data and ultimately influences the results of hydrologic studies which use rainfall as input. Many methods to estimate missing rainfall data have been proposed in literature and, among these, most are based on spatial interpolation algorithms. In this paper different spatial interpo…

Global and Planetary ChangeSettore ICAR/02 - Costruzioni Idrauliche E Marittime E IdrologiaDEMInterpolation methodsGeostatisticsPrecipitationManagement Monitoring Policy and LawMissing dataMultivariate interpolationGeographyKrigingGeostatisticInverse distance weightingStatisticsComputers in Earth SciencesSpatial dependenceSimple linear regressionEarth-Surface ProcessesInterpolation
researchProduct

Extending graphical models for applications: on covariates, missingness and normality

2021

The authors of the paper “Bayesian Graphical Models for Modern Biological Applications” have put forward an important framework for making graphical models more useful in applied settings. In this discussion paper, we give a number of suggestions for making this framework even more suitable for practical scenarios. Firstly, we show that an alternative and simplified definition of covariate might make the framework more manageable in high-dimensional settings. Secondly, we point out that the inclusion of missing variables is important for practical data analysis. Finally, we comment on the effect that the Gaussianity assumption has in identifying the underlying conditional independence graph…

Statistics and ProbabilityComputer sciencemedia_common.quotation_subjectMissing dataConditional graphical modelsCopula graphical modelsMissing dataCovariateEconometricsSparse inferenceGraphical modelStatistics Probability and UncertaintyNormalitymedia_common
researchProduct